Septina 11, un nuevo biomarcador del tejido adiposo y su relación con el metabolismo en humanos

Contenido principal del artículo

Autores

Natalia Rocío Moreno Castellanos Amaia Rodríguez María del Mar Malagón

Resumen

Las principales proteínas del citoesqueleto, actina, tubulina y vimentina, sufren modificaciones de expresión y distribución durante el crecimiento del tejido adiposo y la traslocación de GLUT4 estimulada por insulina a la membrana plasmática. La existencia de un nuevo componente del citoesqueleto, las septinas, se ha propuesto recientemente en varios tejidos de mamíferos. El objetivo del estudio fue caracterizar septina 11 (SEPT11) en tejido adiposo humano en estados de obesidad e insulino resistencia. Se utilizaron muestras pareadas de tejido adiposo subcutáneo y omental de 54 pacientes. Los adipocitos fueron las células responsables del cambio de expresión global de SEPT11 en el tejido adiposo humano, la cuál mostro una distribución y asociacion com las Caveolas. Se encontró una relación directa de SEPT11 con caveolina-1 en adipócitos, su distribución durante la adipogénesis fue variable, desde filamentos hasta conformar anillos. SEPT11 fue regulada por factores lipogénicos (ie., insulina), lipolíticos (ie., isoproterenol) y proinflamatorio (ie., TNF-α y lipopolisacárido) en adipocitos humanos. En consecuencia, SEPT11 se incrementó en estados de obesidad, además, la expresión se relaciono com la hipertrofia adipocitaria en el tejido omental y con marcadores de resistencia a insulina en tejido subcutáneo.

Todo ésto indica que SEPT11 es una nueva proteína del citoesqueleto en adipocitos humanos fuertemente influenciada por la obesidad. Estos resultados amplían nuestra comprensión de la remodelación del citoesqueleto durante el inicio de la obesidad y la resistencia a la insulina.

Detalles del artículo

Referencias

Spalding, K.L., Arner, E., Westermark, P.O., Bernard, S., Buchholz, B.A., Bergmann, O., Blomqvist, L., Hoffstedt, J., Naslund, E., Britton, T., et al. (2008). “Dynamics of fat cell turnover in humans”. Nature. (453) 783-787.
Heinonen, S., Saarinen, L., Naukkarinen, J., Rodríguez, A., Frühbeck, G., Hakkarainen, A., Lundbom, J., Lundbom, N., Vuolteenaho, K., Moilanen, E., et al. (2014). “Adipocyte morphology and implications for metabolic derangements in acquired obesity”. Int J Obes (Lond): doi: 10.1038/ijo.2014.31
Frühbeck, G., Becerril, S., Sáinz, N., Garrastachu, P., and García-Velloso, M.J. (2009). “BAT: a new target for human obesity?”. Trends Pharmacol Sci. (30) 387-396.
Yang, W., Guo, X., Thein, S., Xu, F., Sugii, S., Baas, P.W., Radda, G.K., and Han, W. (2013). “Regulation of adipogenesis by cytoskeleton remodelling is facilitated by acetyltransferase MEC-17-dependent acetylation of alpha-tubulin”. Biochem J. (449) 605-612.
Pellegrinelli, V., Heuvingh, J., du Roure, O., Rouault, C., Devulder, A., Klein, C., Lacasa, M., Clement, E., Lacasa, D., and Clement, K. (2014). “Human adipocyte function is impacted by mechanical cues”. J Pathol. (233) 183-95.
Verstraeten, V.L., Renes, J., Ramaekers, F.C., Kamps, M., Kuijpers, H.J., Verheyen, F., Wabitsch, M., Steijlen, P.M., van Steensel, M.A., and Broers, J.L. (2011). “Reorganization of the nuclear lamina and cytoskeleton in adipogenesis”. Histochem Cell Biol. (135) 251-261.
Spiegelman, B.M., and Farmer, S.R. (1982). “Decreases in tubulin and actin gene expression prior to morphological differentiation of 3T3 adipocytes”. Cell. (29) 53-60.
Lieber, J.G., and Evans, R.M. (1996). “Disruption of the vimentin intermediate filament system during adipose conversion of 3T3-L1 cells inhibits lipid droplet accumulation”. J Cell Sci . (109) 3047-3058.
Schiller, Z.A., Schiele, N.R., Sims, J.K., Lee, K., and Kuo, C.K. (2013). “Adipogenesis of adipose-derived stem cells may be regulated via the cytoskeleton at physiological oxygen levels in vitro”. Stem Cell Res Ther. (4) 79.
Kanzaki, M., and Pessin, J.E. (2001). “Insulin-stimulated GLUT4 translocation in adipocytes is dependent upon cortical actin remodeling”. J Biol Chem. (276) 42436-42444.
Ariotti, N., Murphy, S., Hamilton, N.A., Wu, L., Green, K., Schieber, N.L., Li, P., Martin, S., and Parton, R.G. (2012). “Postlipolytic insulin-dependent remodeling of micro lipid droplets in adipocytes”. Mol Biol Cell. (23) 1826-1837.
Lopez, J.A., Burchfield, J.G., Blair, D.H., Mele, K., Ng, Y., Vallotton, P., James, D.E., and Hughes, W.E. (2009). “Identification of a distal GLUT4 trafficking event controlled by actin polymerization”. Mol Biol Cell. (20) 3918-3929.
Richter, T., Floetenmeyer, M., Ferguson, C., Galea, J., Goh, J., Lindsay, M.R., Morgan, G.P., Marsh, B.J., and Parton, R.G. (2008). “High-resolution 3D quantitative analysis of caveolar ultrastructure and caveola-cytoskeleton interactions”. Traffic. (9) 893-909.
Méndez-Giménez, L., Rodríguez, A., Balaguer, I., and Frühbeck, G. (2014). “Role of aquaglyceroporins and caveolins in energy and metabolic homeostasis”. Mol Cell Endocrinol: 10.1016/j.mce.2014.06.017
Mostowy, S., and Cossart, P. (2012). “Septins: the fourth component of the cytoskeleton”. Nat Rev Mol Cell Biol. (13) 183-194.
16. Hall, P.A., and Russell, S.E. (2004). “The pathobiology of the septin gene family”. J Pathol. (204) 489-505.
Weirich, C.S., Erzberger, J.P., and Barral, Y. (2008). “The septin family of GTPases: architecture and dynamics”. Nat Rev Mol Cell Biol. (9) 478-489.
Spencer, B., Crews, L., and Masliah, E. (2007). “Climbing the scaffolds of Parkinson’s disease pathogenesis”. Neuron. (53) 469-470.
Maimaitiyiming, M., Kumanogoh, H., Nakamura, S., Nagata, K., Suzaki, T., and Maekawa, S. (2008). “Biochemical characterization of membrane-associated septin from rat brain”. J Neurochem. (106) 1175-1183.
Peterson, E.A., and Petty, E.M. (2010). “Conquering the complex world of human septins: implications for health and disease”. Clin Genet. (77) 511-524.
Hall, P.A., Jung, K., Hillan, K.J., and Russell, S.E. (2005). “Expression profiling the human septin gene family”. J Pathol. (206) 269-278.
Prior, M.J., Larance, M., Lawrence, R.T., Soul, J., Humphrey, S., Burchfield, J., Kistler, C., Davey, J.R., La-Borde, P.J., Buckley, M., et al. (2011). “Quantitative proteomic analysis of the adipocyte plasma membrane”. J Proteome Res. (10) 4970-4982.
Genuth S, Alberti KG, Bennett P, Buse J, Defronzo R, Kahn R, Kitzmiller J, Knowler WC, Lebovitz H, Lernmark A, et al. (2003). “Follow-up report on the diagnosis of diabetes mellitus”. Diabetes Care. (26) 3160-3167.
Rodriguez, A., Gomez-Ambrosi, J., Catalan, V., Rotellar, F., Valenti, V., Silva, C., Mugueta, C., Pulido, M.R., Vazquez, R., Salvador, J., et al. (2012). “The ghrelin O-acyltransferase-ghrelin system reduces TNF-alpha-induced apoptosis and autophagy in human visceral adipocytes”. Diabetologia. ( 55) 3038-3050.
Catalán V, Gómez-Ambrosi J, Rotellar F, Silva C, Rodríguez A, Salvador J, Gil MJ, Cienfuegos JA, and Frühbeck G. (2007). “Validation of endogenous control genes in human adipose tissue: relevance to obesity and obesity-associated type 2 diabetes mellitus”. Horm Metab Res. (39) 495-500.
Cruz-García, D., Díaz-Ruiz, A., Rabanal-Ruiz, Y., Peinado, J.R., Gracia-Navarro, F., Castaño, J.P., Montero-Hadjadje, M., Tonon, M.C., Vaudry, H., Anouar, Y., et al. (2012). “The Golgi-associated long coiled-coil protein NECC1 participates in the control of the regulated secretory pathway in PC12 cells”. Biochem J.( 443) 387-396.
Peiró, S., Comella, J.X., Enrich, C., Martin-Zanca, D., and Rocamora, N. (2000). “PC12 cells have caveolae that contain TrkA. Caveolae-disrupting drugs inhibit nerve growth factor-induced, but not epidermal growth factor-induced, MAPK phosphorylation”. J Biol Chem. (275) 37846-37852.
Rodríguez, A., Catalán, V., Gómez-Ambrosi, J., and Frühbeck, G. (2007). “Visceral and subcutaneous adiposity: are both potential therapeutic targets for tackling the metabolic syndrome?”. Curr Pharm Des. (13) 2169-2175.
Mostowy, S., Janel, S., Forestier, C., Roduit, C., Kasas, S., Pizarro-Cerda, J., Cossart, P., and Lafont, F. (2011). “A role for septins in the interaction between the Listeria monocytogenes INVASION PROTEIN InlB and the Met receptor”. Biophys J. (100) 1949-1959.
Parton, R.G., and del Pozo, M.A. (2013). “Caveolae as plasma membrane sensors, protectors and organizers”. Nat Rev Mol Cell Biol. (14) 98-112.
Catalán, V., Gómez-Ambrosi, J., Rodríguez, A., Silva, C., Rotellar, F., Gil, M.J., Cienfuegos, J.A., Salvador, J., and Frühbeck, G. (2008). “Expression of caveolin-1 in human adipose tissue is upregulated in obesity and obesity-associated type 2 diabetes mellitus and related to inflammation”. Clin Endocrinol (Oxf). (68) 213-219.
Stall, R., Ramos, J., Kent Fulcher, F., and Patel, Y.M. (2014). “Regulation of myosin IIA and filamentous actin during insulin-stimulated glucose uptake in 3T3-L1 adipocytes”. Exp Cell Res. (322) 81-88.
Franke, W.W., Hergt, M., and Grund, C. (1987). “Rearrangement of the vimentin cytoskeleton during adipose conversion: formation of an intermediate filament cage around lipid globules”. Cell (49) 131-141.
Bhonagiri, P., Pattar, G.R., Habegger, K.M., McCarthy, A.M., Tackett, L., and Elmendorf, J.S. (2011). “Evidence coupling increased hexosamine biosynthesis pathway activity to membrane cholesterol toxicity and cortical filamentous actin derangement contributing to cellular insulin resistance”. Endocrinology. (152) 3373-3384.
Huang, Y.W., Yan, M., Collins, R.F., Diciccio, J.E., Grinstein, S., and Trimble, W.S. (2008). “Mammalian septins are required for phagosome formation”. Mol Biol Cell. (19) 1717-1726.
Hanai, N., Nagata, K., Kawajiri, A., Shiromizu, T., Saitoh, N., Hasegawa, Y., Murakami, S., and Inagaki, M. (2004). “Biochemical and cell biological characterization of a mammalian septin, Sept11”. FEBS Lett. ( 568) 83-88.
Blüher, M., Wilson-Fritch, L., Leszyk, J., Laustsen, P.G., Corvera, S., and Kahn, C.R. (2004). “Role of insulin action and cell size on protein expression patterns in adipocytes”. J Biol Chem. (279) 31902-31909.
Kumar, N., Robidoux, J., Daniel, K.W., Guzman, G., Floering, L.M., and Collins, S. (2007). “Requirement of vimentin filament assembly for beta3-adrenergic receptor activation of ERK MAP kinase and lipolysis”. J Biol Chem. (282) 9244-9250.
Ding, Y., Wu, Y., Zeng, R., and Liao, K. (2012). “Proteomic profiling of lipid droplet-associated proteins in primary adipocytes of normal and obese mouse”. Acta Biochim Biophys Sin (Shanghai). ( 44) 394-406.
Higami, Y., Barger, J.L., Page, G.P., Allison, D.B., Smith, S.R., Prolla, T.A., and Weindruch, R. (2006). “Energy restriction lowers the expression of genes linked to inflammation, the cytoskeleton, the extracellular matrix, and angiogenesis in mouse adipose tissue”. J Nutr (136) 343-352.
Teichert-Kuliszewska, K., Hamilton, B.S., Roncari, D.A., Kirkland, J.L., Gillon, W.S., Deitel, M., and Hollenberg, C.H. (1996). “Increasing vimentin expression associated with differentiation of human and rat preadipocytes”. Int J Obes Relat Metab Disord. (20) Suppl 3:S108-113.
Ahmed, M., Neville, M.J., Edelmann, M.J., Kessler, B.M., and Karpe, F. (2010). “Proteomic analysis of human adipose tissue after rosiglitazone treatment shows coordinated changes to promote glucose uptake”. Obesity (Silver Spring). (18) 27-34.
Bouwman, F.G., Wang, P., van Baak, M., Saris, W.H., and Mariman, E.C. (2014). “Increased beta-oxidation with improved glucose uptake capacity in adipose tissue from obese after weight loss and maintenance”. Obesity (Silver Spring). (22) 819-827.
Takenouchi, T., Miyashita, N., Ozutsumi, K., Rose, M.T., and Aso, H. (2004). “Role of caveolin-1 and cytoskeletal proteins, actin and vimentin, in adipogenesis of bovine intramuscular preadipocyte cells”. Cell Biol Int. (28) 615-623.
Kanzaki, M., and Pessin, J.E. (2002). “Caveolin-associated filamentous actin (Cav-actin) defines a novel F-actin structure in adipocytes”. J Biol Chem. (277) 25867-25869.

Descargas

La descarga de datos todavía no está disponible.